High Frequency Ceramic Solutions

2.4 GHz SMD, Above Metal, Low Profile Mini Chip Antenna, P/N 2450AT42E010B
This antenna must have metal underneath in order to function properly

Detail Specification: 2/21/2020

General Specifications

<table>
<thead>
<tr>
<th>Part Number</th>
<th>2450AT42E010B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (MHz)</td>
<td>2400 - 2480</td>
</tr>
<tr>
<td>Return Loss (dB)</td>
<td>Tuning Version1</td>
</tr>
<tr>
<td></td>
<td>2.7 min.</td>
</tr>
<tr>
<td>Peak Gain (dBi typ.)</td>
<td>-1.0 (YZ-V)</td>
</tr>
<tr>
<td>Impedance</td>
<td>50 Ω</td>
</tr>
<tr>
<td>Power Capacity</td>
<td>2W max. (CW)</td>
</tr>
<tr>
<td>Q'ty/Reel (pcs)</td>
<td>2,000</td>
</tr>
<tr>
<td>Operating Temp</td>
<td>-40 to +85°C</td>
</tr>
<tr>
<td>Recommended Storage Conditions and Period for unused T&R Product</td>
<td>+5 to +35°C Humidity 45 - 75% RH 18 months max.</td>
</tr>
</tbody>
</table>

This antenna was designed in mind for small coin cell, wearable, IoT, 2.4 BLE, 802.11, ISM, Zigbee, etc. applications in close-range networks where metal or a battery/display covers the entire length or side of the PCB or encasement must be present directly under the antenna and there's no room for usual/typical antenna metal clearance.

This antenna is specifically designed for PCBs that have 1 - 2 mm of total thickness

Part Number Explanation

<table>
<thead>
<tr>
<th>P/N Suffix</th>
<th>Packing Style</th>
<th>Bulk</th>
<th>T & R</th>
<th>Suffix = S</th>
<th>Suffix = E</th>
</tr>
</thead>
<tbody>
<tr>
<td>EVB P/N</td>
<td>Tuning Version1</td>
<td>2450AT42E010B-EB1SMA (comes with 1 female SMA connector)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tuning Version2</td>
<td>2450AT42E010B-EB2SMA (comes with 1 female SMA connector)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mechanical Specifications

<table>
<thead>
<tr>
<th></th>
<th>mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>5.00 ± 0.20</td>
</tr>
<tr>
<td>W</td>
<td>2.00 ± 0.20</td>
</tr>
<tr>
<td>T</td>
<td>1.50 ± 0.20</td>
</tr>
<tr>
<td>a</td>
<td>0.50 ± 0.20</td>
</tr>
<tr>
<td>b</td>
<td>1.50 ± 0.20</td>
</tr>
<tr>
<td>C</td>
<td>0.30 max</td>
</tr>
</tbody>
</table>

Terminal Configuration

1. Feeding Point
2. NC1
3. GND
4. GND

1 Make sure to have Pin 2 soldered to its PCB land pad but not connected to GND or input, it must be NC (or floating).

Johanson Technology, Inc. reserves the right to make design changes without notice. Please confirm the specifications and delivery conditions when placing your order. All sales are subject to Johanson Technology, Inc. terms and conditions.

https://www.johansontechnology.com
4001 Calle Tecate • Camarillo, CA 93012 • TEL 805.389.1166 FAX 805.389.1821
Ver. 4.0 2020 Johanson Technology, Inc. All Rights Reserved
2.4 GHz SMD, Above Metal, Low Profile Mini Chip Antenna, P/N 2450AT42E010B

This antenna must have metal underneath in order to function properly

Detail Specification: 2/21/2020

Mounting Considerations 1

Tuning Version 1

![Diagram of Tuning Version 1](image1)

Ground Plane (where other SMD components will be mounted)

- Matching circuits
- 50Ω Feed Line
- 6.26mm
- 3mm
- 30mm
- 50mm

p/n: 2450AT42E010B-EB1SMA

Tuning Version 2

![Diagram of Tuning Version 2](image2)

Ground Plane (where other SMD components will be mounted)

- Matching circuits
- 50Ω Feed Line
- 6.26mm
- 3mm
- 30mm
- 50mm

p/n: 2450AT42E010B-EB2SMA

To order a pre-tuned 50Ω EVB with a female SMA connector you see here

Click here: https://www.johansontechnology.com/request-a-sample

Reference p/n: 2450AT42E010B-EB1SMA / 2450AT42E010B-EB2SMA

Need help designing the antenna in? Use our antenna design services! https://www.johansontechnology.com/ipc-antenna-services

2 Free layout reviews and if you need us to tune and characterize the antenna on your design (anechoic chamber) we can do that too (lab fee may apply for the latter).
2.4 GHz SMD, Above Metal, Low Profile Mini Chip Antenna, P/N 2450AT42E010B
This antenna must have metal underneath in order to function properly

Detail Specification: 2/21/2020

Mounting Considerations on EVB1&2 - Detail
The exact geometry of the detail below on your PCB is crucial for the proper performance of the antenna.

Component values of matching circuit will be different, depending on PCB layout.
*Line width should be designed to match 50ohm characteristic impedance, depending on PCB material and thickness. A coplanar waveguide trace is recommended for best results.
For this particular antenna it is recommended that the designer leave available slots for the matching network, even if all slots won't be used, this will prepare the PCB for the unpredictable final mass production version of the matching circuit. The antenna matching network values above are used when antenna is mounted on Johanson's evaluation board. The matching values on client's PCB will be different.
2.4 GHz SMD, Above Metal, Low Profile Mini Chip Antenna, P/N 2450AT42E010B
This antenna must have metal underneath in order to function properly

Mounting Considerations 2 - Circular PCB Environments (coin cell type)

Top View

Bottom View

Note: There's no orderable EVB available for the above "Mounting Considerations 2" reference design

Receding the GND plane may sound counter-intuitive, but this helps shape the radiation pattern in a more isometric (spherical) shape. We recommend the designer do this if he/she can afford the reduce SMT space, but not mandated.

Want the layout file? Send us a message at: https://www.johansontechnology.com/ask-a-question

Johanson Technology, Inc. reserves the right to make design changes without notice. Please confirm the specifications and delivery conditions when placing your order. All sales are subject to Johanson Technology, Inc. terms and conditions.
2.4 GHz SMD, Above Metal, Low Profile Mini Chip Antenna, P/N 2450AT42E010B
This antenna must have metal underneath in order to function properly

Typical Electrical Characteristics (T=25 °C) Return Loss

Tuning Version 1

Tuning Version 2
2.4 GHz SMD, Above Metal, Low Profile Mini Chip Antenna, P/N 2450AT42E010B
This antenna must have metal underneath in order to function properly

Detail Specification: 2/21/2020

Typical Electrical Characteristics (T=25 °C) Radiation Patterns@2.44GHz

Johanson Technology, Inc. reserves the right to make design changes without notice. Please confirm the specifications and delivery conditions when placing your order. All sales are subject to Johanson Technology, Inc. terms and conditions.
How To Choose The Correct Antenna Variant

We offer 2 other resonating variants of this antenna since the antenna's efficiency is largely affected by the thickness of the PCB's substrate. This allows a more robust design to fit your PCB. The disparity between antenna variations are internal only; variations are identical in dimension and solder footprint.

Refer to the diagram below to understand what is meant by substrate thickness.

![Diagram of antenna with substrate thickness](image)

* For PCBs consisting of multiple layers, the thickness (H) is limited only to the metal layer immediately below 'Top Metal Layer.'

The below plot demonstrates the effect that substrate thickness has on the antenna’s performance.

As you can see, there is a direct correlation between substrate thickness (H) and the resonant frequency. This is, in part, due to the natural capacitive loading effect and resonating frequency of the PCB itself. Our antenna variants were developed to counter this effect.

Note: "H" substrate thickness of <0.25mm (10mil) is not recommended. The component will still work and radiate, just not optimally.
High Frequency Ceramic Solutions

2.4 GHz SMD, Above Metal, Low Profile Mini Chip Antenna, P/N 2450AT42E010B

This antenna must have metal underneath in order to function properly

Detail Specification: 2/21/2020

Page 8 of 10

How To Choose The Correct Antenna Variant

Refer to the table below for substrate thickness and the corresponding antenna variation.

<table>
<thead>
<tr>
<th>PCB Substrate Thickness (H)</th>
<th>Recommended JTI PN</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1.0mm</td>
<td>2450AT42E0100</td>
</tr>
<tr>
<td>1.0mm - 2.0mm</td>
<td>2450AT42E010B</td>
</tr>
<tr>
<td>≥ 2.0mm</td>
<td>2450AT42E010C</td>
</tr>
</tbody>
</table>

Typical Efficiency Values @ 2.44GHz for various scenarios for a 30x50mm PCB

The following efficiency values represent performance on a 30x50mm EVB like on page 2. Please note that antenna efficiency varies widely with board layout, size and surroundings.

<table>
<thead>
<tr>
<th>PCB Substrate Thickness (H)</th>
<th>Simulated Antenna Efficiency(%) @ 2.44GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2450AT42E0100</td>
</tr>
<tr>
<td>H = 0.12 mm</td>
<td>1.95%</td>
</tr>
<tr>
<td>H = 0.7 mm</td>
<td>29.20%</td>
</tr>
<tr>
<td>H = 1.5 mm</td>
<td>23.30%</td>
</tr>
<tr>
<td>H = 2.5 mm</td>
<td>21.60%</td>
</tr>
</tbody>
</table>

We encourage you to use a relatively thick dielectric layer below antenna, as we have seen a direct correlation between substrate thickness and antenna performance.

Note: "H" substrate thickness of <0.25mm (10mil) is not recommended. The component will still work and radiate, just not optimally.
Recommendations when using 2450AT42E010B

We have found that the best performance can be gained when using the 2450AT42E010B with a 4-layer PCB with a total thickness approximately 1.5mm thick.

The 2450AT42E010B 4-layer evaluation board has the following stackup:

- 6 mil
- 41 mil
- 6 mil

To order a pre-tuned 50Ω EVB with a female SMA connector, click here: https://www.johansontechnology.com/request-a-sample

Reference p/n: 2450AT42E010B-EB1SMA / 2450AT42E010B-EB2SMA
2.4 GHz SMD, Above Metal, Low Profile Mini Chip Antenna, P/N 2450AT42E010B
This antenna must have metal underneath in order to function properly

<table>
<thead>
<tr>
<th>Antenna layout review, tuning, and characterization services</th>
<th>https://www.johansontechnology.com/ipc-antenna-services</th>
</tr>
</thead>
<tbody>
<tr>
<td>More SMD Chip Antennas at:</td>
<td>https://www.johansontechnology.com/antennas</td>
</tr>
<tr>
<td>Soldering Information</td>
<td>https://www.johansontechnology.com/ipcsoldering-profile</td>
</tr>
<tr>
<td>Antenna layout and tuning techniques (How to obtain the new antenna matching values)</td>
<td>https://www.johansontechnology.com/tuning</td>
</tr>
<tr>
<td>Packaging information</td>
<td>http://www.johansontechnology.com/tape-reel-packaging</td>
</tr>
<tr>
<td>RoHS Compliance</td>
<td>https://www.johansontechnology.com/rohs-compliance</td>
</tr>
<tr>
<td>MSL Info</td>
<td>https://www.johansontechnology.com/msl-rating</td>
</tr>
<tr>
<td>P/N Explanation and Breakdown</td>
<td>https://www.johansontechnology.com/ipc-pn-explained</td>
</tr>
</tbody>
</table>