Multi-Layer Low ESR High-Q Capacitors

These lines of Multi-Layer High-Q Capacitors, HiQ MLCC, HiQ Capacitors, SMT Capacitors, Low ESR Capacitors and Low Loss Capacitors have been developed for High-Q and microwave applications.

L-Series

Silver/Palladium electrode
Card image cap
Low Power
EIA 0201 (R05L) NPO/COG

Example P/N: 250R05L100JV4T

These capacitors give mid-high Q performance, and exhibit NP0 temperature characteristics.

Silver/Palladium electrode

C-Series

Copper Electrode
Card image cap
Medium Power
EIA 0402 (QCCF) NPO/COG

Example P/N: QCCF251Q0R7B1GV001T

EIA 0603 (QCCP) NPO/COG

Example P/N: QCCP501Q100J1GV001T

EIA 0805 (QCCT) NPO/COG

Example P/N: QCCT501Q121JGV001T

Ultra-high Q and low ESR performance with NPO characteristics.

Copper Electrode

S-Series

Silver/Palladium electrode
Card image cap
Medium Power
EIA 0402 (R07S) NPO/COG

Example P/N:
201R07S4R7BV4T

EIA 0603 (R14S) NPO/COG

Example P/N:
251R14S101JV4T

EIA 0805 (R15S) NPO/COG

Example P/N:
251R15S470JV4E

Ultra-high Q and low ESR performance with NPO characteristics.

Silver/Palladium electrode

E-Series

Silver/Palladium electrode
Card image cap
High Power
EIA 1111 (S42E) NPO/COG

Example P/N:
102S42E391GV3E

EIA 2525 (S48E) NPO/COG

Example P/N:
252S48E360GU3W

EIA 3838 (S58E) NPO/COG

Example P/N:
362S58E101JU3W

Excellent high-Q, low ESR and high RF power, from HF to microwave.

Silver/Palladium electrode

Multi-Layer/Low ESR High-Q Capacitors Information

Voltage Ratings
EIA Size/Cap. Value Miniature Size - Portable Electronics RF Power Applications
0201 (R05)   NEW   NEW     NEW      
NPO (R05L) 0402 (R07S) 0402 (QCCF) 0603 (R14S) 0603 (QCCP) 0805 (R15S) 0805 (R15L) 0805 (QCCT) 1111 (S42E) 2525 (S48E) 3838 (S58E)
pF Code   Voltage
0.1 0R1 A
B
C
D
25/50V 50/250V 250V 250V 500V     1000V       
0.2 0R2 25/50V 50/250V 250V 250V 500V     1000V 500V 1500V    
0.3 0R3 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V   
0.4 0R4 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V   
0.5 0R5 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V  
0.6 0R6 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V 3600V 7200V
0.7 0R7 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
0.8 0R8 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
0.9 0R9 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
1.0 1R0 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
1.1 1R1 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
1.2 1R2 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
1.3 1R3 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
1.4 1R4 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
1.5 1R5 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
1.6 1R6 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
1.7 1R7 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
1.8 1R8 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
1.9 1R9 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
2.0 2R0 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
2.1 2R1 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
2.2 2R2 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
2.4 2R4 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
2.7 2R7 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
3.0 3R0 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
3.3 3R3 25/50V 50/250V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
3.6 3R6 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
3.9 3R9 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
4.3 4R3 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
4.7 4R7 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
5.1 5R1 B
C
D
25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
5.6 5R6 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
6.2 6R2 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
6.8 6R8 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
7.5 7R5 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
8.2 8R2 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
9.1 9R1 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
10 100 F
G
J
K
25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
11 110 25/50V 50/200V 250V 250V 500V250V   1000V 500V 1500V 3600V3600V7200V
12 120 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
13 130 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
15 150 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
16 160 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
18 180 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
20 200 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
22 220 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
24 240 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
27 270 25/50V 50/200V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
30 300 25/50V 50V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
33 330 25/50V 50V 250V 250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
36 360 F
G
J
K
25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
39 390 25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
43 430 25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
47 470 25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
51 510 25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
56 560 25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
62 620 25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
68 680 25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
75 750 25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
82 820 25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
91 910 25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
100 101 25/50V   250V 500V 250V   1000V 500V 1500V 3600V3600V7200V
110 111       250V   500V 300V 1500V2500V3600V7200V
120 121       250V   500V 300V 1000V2500V3600V7200V
130 131       250V   500V 300V 1000V2500V3600V7200V
150 151       250V   500V 300V 1000V2500V3600V7200V
160 161       250V   500V 300V 1000V2500V3600V7200V
180 181       250V   500V 300V 1000V2500V3600V7200V
200 201       250V   500V 300V 1000V2500V3600V 
220 221       250V   500V 200V 1000V2500V3600V 
240 241         200/500V 200V 600V2500V3600V 
270 271         200/500V 200V 600V2500V 3600V 
300 301         200/500V 200V 600V 1500V 3600V 
330 331         200/500V 200V 600V1500V 3600V 
360 361         200/500V 200V 600V1500V 3600V 
390 391         200/500V 200V500V1500V3600V 
430 431 F
G
J
K
        200/500V 200V500V1500V2500V 
470 471         500V 200V500V1500V2500V 
510 511         100V 200V500V 1000V2500V 
560 561         100V 200V500V1000V2500V 
620 621         100V 200V500V1000V2500V 
680 681         50V 200V 1000V2500V 
750 751         50V 200V 1000V2500V 
820 821         50V 200V 1000V2500V 
910 911         50V 200V 1000V 1000V 
1000 102         50V 200V 1000V1000V 
1200 122         50V   1000V1000V 
1500 152         50V    500V1000V 
1800 182         50V    500V1000V 
2200 222         50V    300V1000V 
2700 272              300V 500V 
3300 332              500V 
3900 392              500V 
4700 472              500V 
5100 512              500V 
10000 103                
Resonant frequencies

The Series Resonant Frequency is highly dependent on the substrate, pad dimensions, and measurement method. The below charts are for reference only.

0201 R05L Resonant frequency
0201 R05L Series Resonant frequency
0402 R07S Resonant frequency
0402 R07S Series Resonant frequency
0603 R14S Resonant frequency
0603 R14S Series Resonant frequency
0805 R15S Resonant frequency
0805 R15S Series Resonant frequency
1111 S42E Resonant frequency
1111 S42E Series Resonant frequency
2525 S48E Resonant frequency
2525 S48E Series Resonant frequency
3838 S58E Resonant frequency
3838 S58E Series Resonant frequency
ESR curves
0201 R05L Equivalent Series Resistance (ESR)
0201 R05L Equivalent Series Resistance (ESR)
0402 R07S Equivalent Series Resistance (ESR)
0402 R07S Equivalent Series Resistance (ESR)
0603 R14S Equivalent Series Resistance (ESR)
0603 R14S Equivalent Series Resistance (ESR)
0805 R15S Equivalent Series Resistance (ESR)
0805 R15S Equivalent Series Resistance (ESR)
1111 S42E Equivalent Series Resistance (ESR)
1111 S42E Equivalent Series Resistance (ESR)
2525 S48E Equivalent Series Resistance (ESR)
2525 S48E Equivalent Series Resistance (ESR)
3838 S58E Equivalent Series Resistance (ESR)
3838 S58E Equivalent Series Resistance (ESR)
Q factor curves
0201 R05L Q factor
0201 R05L Q factor
0402 R07S Q factor
0402 R07S Q factor
0603 R14S Q factor
0603 R14S Q factor
0805 R15S Q factor
0805 R15S Q factor
1111 S42E Q factor
1111 S42E Q factor
2525 S48E Q factor
2525 S48E Q factor
3838 S58E Q factor
3838 S58E Q factor
Max RF current
0201 R05L Max Current
0201 R05L Max Current
0402 R07S Max Current
0402 R07S Max Current
0603 R14S Max Current
0603 R14S Max Current
0805 R15S Max Current
0805 R15S Max current vs. capacitance value
0805 R15S Max Current at higher frequencies
0805 R15S Max current vs. frequency
1111 S42E Max Current Low Frequencies
1111 S42E Max current vs. capacitance value
1111 S42E Max Current at higher frequencies
1111 S42E Max current vs. frequency
2525 S48E Max Current Low Frequencies
2525 S48E Max Current
3838 S58E Max Current Low Frequencies
3838 S58E Max Current
Dielectric Characteristics
NPO
Temperature Coefficient: 0 ± 30ppm /°C, -55 to 150°C
Quality Factor / DF: Q >1,000 @ 1 MHz, Typical 10,000
Insulation Resistance: >10 GΩ @ 25°C,WVDC;
125°C IR is 10% of 25°C rating
Dielectric Strength: 2.5 X WVDC Min., 25°C, 50 mA max
Test Parameters: 1MHz ±50kHz, 1.0±0.2VRMS for capacitance values ≤ 1,000pF
1kHZ ±50Hz, 1.0±0.2VRMS for capacitance values > 1,000pF
Available Capacitance: Size 0201: 0.2 - 100 pF
Size 0402: 0.2 - 33 pF
Size 0603: 0.2 - 100 pF
Size 0805: 0.3 - 220 pF
Size 1111: 0.2 - 1000 pF
Size 2525: 0.5 - 2700 pF
Size 3838: 0.5 - 5100 pF
Mechanical Characteristics
SizeUnitsLengthWidthThicknessEnd Band
EIA 0201In.024 ± .001.012 ± .001.012 ± .001.008 Max.
Metric (0603)mm(0.60 ± 0.03)(0.30 ± 0.03)(0.30 ± 0.03)(0.20 Max.)
EIA 0402In.040 ± .004.020 ± .004.020 ± .004.010 ± .006
Metric (1005)mm(1.02 ± 0.1)(0.51 ± 0.1)(0.51 ± 0.1)(0.25 ± .15)
EIA 0603In.062 ± .006.032 ± .006.030 + .005 /- .003.014 ± .006
Metric (1608)mm(1.57 ± 0.15)(0.81 ± 0.15)(0.76 + .13 - .08)(0.35 ± .15)
EIA 0805In.080 ± .008.050 ± .008.040 ± .006.020 ± .010
Metric (2012)mm(2.03 ± 0.20)(1.27 ± 0.20)(1.02 ± .15)(0.50 ± .25)
Environmental Characteristics
SpecificationTest Parameters
Solderability: Solder coverage ≥ 90% of metalized areas No termination degradation Preheat chip to 120°-150°C for 60 sec., dip terminals in rosin flux then dip in Sn62 solder @ 240°±5°C for 5±1 sec
Resistance to Soldering Heat : No mechanical damage
Capacitance change: ±2.5% or 0.25pF
Q>500 I.R. >10 G Ohms
Breakdown voltage: 2.5 x WVDC
Preheat device to 80°-100°C for 60 sec. followed by 150°-180°C for 60 sec. Dip in 260°±5°C solder for 10±1 sec. Measure after 24±2 hour cooling period
Terminal Adhesion: Termination should not pull off.
Ceramic should remain undamaged.
Linear pull force* exerted on axial leads soldered to each terminal.
*0402 ≥ 2.0lbs, 0603 ≥ 4.0lbs (min.)
PCB Deflection: No mechanical damage.
Capacitance change: 2% or 0.5pF Max
Glass epoxy PCB: 0.5 mm deflection
Vibration: No mechanical damage.
Capacitance change: ±2.5% or 0.25pF
Q>1000 I.R. ≥ 10 G-Ohm
Breakdown voltage: 2.5 x WVDC
Cycle performed for 2 hours in each of three perpendicular directions.
Frequency range 10Hz to 55 Hz to 10 Hz traversed in 1 minute. Harmonic motion amplitude: 1.5mm.
Humidity, Steady State: No mechanical damage. Capacitance change: ±5.0% or 0.50pF max.
Q>300 I.R. ≥ 1 G-Ohm
Breakdown voltage: 2.5 x WVDC
Relative humidity: 90-95%
Temperature: 40°±2°C
Test time: 500 +12/-0 Hours
Measure after 24±2 hour cooling period
Humidity, Low Voltage: No mechanical damage.
Capacitance change: ±5.0% or 0.50pF max.
Q>300 I.R. = 1 G-Ohm min.
Breakdown voltage: 2.5 x WVDC
Applied voltage: 1.5 VDC, 50 mA max.
Relative humidity: 85±2%
Temperature: 40°±2°C
Test time: 240 +12/-0 Hours
Measure after 24±2 hour cooling period
Thermal Cycle: No mechanical damage.
Capacitance change: ±2.5% or 0.25pF
Q>2000 I.R. >10 G Ohms
Breakdown voltage: 2.5 x WVDC
5 cycles of: 30±3 minutes @ -55°+0/-3°C,
2-3 min. @ 25°C, 30±3 min. @ +125°+3/-0°C,
2-3 min. @ 25°C
Measure after 24±2 hour cooling period
Life Test: MIL-STD-202, Method 1081 No mechanical damage.
Capacitance change: ±3.0% or 0.3 pF
Q>500 I.R. >1 G Ohms
Breakdown voltage: 2.5 x WVDC
Applied voltage: 200% of WDVC for capacitors rated at 500 volts DC or less.
Temperature: 125°±3°C
Test time: 1000+48-0 hours

Automotive applications (AEC-Q200): additional requirements – please consult factory for details.

Chip Capacitor Tape & Reel Packaging

Johanson capacitors are available taped per EIA standard 481. Tape options include 5", 7" and 13" diameter reels. Johanson uses high quality, dust free, punched 8mm paper tape and plastic embossed 8mm tape for thicker MLCs. Quantity per reel ranges are listed in the tables below and are dependent on chip thickness.

Image of a Johanson Tape Reel
Image of a Johanson embossed and paper Tape close up Image of a Johanson embossed and paper Tape close up 4mm apart Image of a Johanson embossed and paper Tape close up 8mm apart

 

5” DIA. REEL SIZE7” DIA. REEL SIZE13” DIA. REEL SIZE
TYPE / SIZEREEL QUANTITYTAPE TYPETAPE CODEREEL QUANTITYTAPE TYPETAPE CODEREEL QUANTITYTAPE TYPETAPE CODE
R05 / 0201 500 PaperY 15,000 PaperT N/A N/A N/A
R07 / 0402 500PaperY 10,000 PaperT N/A N/A N/A
R14 / 0603 500PaperY 4,000 PaperT 10,000 Paper R
R15 / 0805500 Embossed Z 4,000 Embossed E 10,000 Embossed U
S42 / 1111500 Embossed Z 2,000 Embossed E 10,000 Embossed U
S48 / 2525 N/A 250 Embossed E 1,000 Embossed U
S58 / 3838 N/A 250 Embossed E 1,000 Embossed U
LASERtrim® (All)500PaperY 4.5-5.0K PaperT 15,000 Paper R
SUBSTRATES – DEPENDS ON SIZE, TYPICAL IS 10/BOX CAP ARRAYS - 100/TRAY
SINGLE LAYER CAPACITORS - UP TO 50 MIL, 400/WAFFLE PACK; > 50 MIL, 100/WAFFLE PACK
SLC’S CAN ALSO BE MOUNTED ON GRIP RINGS, RING FRAMES, AND SURFTAPE
CUSTOM PACKAGING AND QUANTITIES ARE AVAILABLE, CONTACT THE FACTORY FOR OPTIONS
PLEASE VISIT OUR WEB SITE FOR RF CERAMIC COMPONENT PACKAGING INFORMATION.
Soldering Profiles and Guidelines for SMT Ceramic Components
General

Ceramic chip capacitors exhibit excellent reliability characteristics providing that proper circuit design techniques and controlled assembly processes are utilized. Due to the ceramic capacitor’s crystalline micro-structure these components are susceptible when exposed to excessive thermal or mechanical shock during circuit processing. It should be noted that micro-cracks in ceramic can be difficult to detect with normal post assembly visual and electrical testing and can pose a significant threat to reliable field operation. For this reason it is recommended that the assembly qualification process employ suitable testing to expose the presence of micro-cracking conditions.

Figure 1: Solder Reflow Profile for Ceramic Capacitors and Inductors (JEDEC J-STD-020C compatible)
Figure 1: Solder Reflow Profile for Ceramic Capacitors and Inductors (JEDEC J-STD-020C compatible)
Ceramic components’ leads composition and soldering compatibility

High Frequency Ceramic Capacitors & Inductors - Offered with standard tin plated nickel-barrier terminations compatible with solder flow and reflow processes.

Single Layer Capacitors - Offered with Titanium-Tungsten/Gold and Titanium-Tungsten/ Nickel/Gold thin-film termination as well as legacy Platinum/Palladium/Gold terminations.

LASERtrim® Capacitors - Offered with gold flashed nickel-barrier terminations only. Due to the unique internal construction of the LASERtrim® it is recommended that a conservative reflow temperature profile be used (Fig. 5). Wave soldering is discouraged.

Figure 2: Solder Flow Profile for Ceramic Capacitors and Inductors
Figure 2: Solder Flow Profile for Ceramic Capacitors and Inductors.
Soldering Iron

Ceramic capacitor attachment with a soldering iron is discouraged due to the inherent limitations on precisely controlling soldering temperature, heat transfer rate, and time. In the event that a soldering iron must be employed the following precautions are recommended.

  • Preheat circuit and ceramic component to 150°C
  • ever contact the ceramic surface with the iron tip
  • 30 watt iron output (max)
  • 280°C tip temperature (max)
  • 3.0 mm tip diameter (max)
  • Limit soldering time to 5 sec.
Figure 3: Vapor Phase Profile for MLCCs
Figure 3: Vapor Phase Profile for MLCCs
Solder Pre-Heat Cycle

Proper preheating is essential to prevent thermal shock cracking of the capacitor. The circuit assembly should be preheated as shown in the recommended profiles at a rate of 1.0 to 2.0°C per second to within 65 to 100°C of the maximum soldering temperature.

  • Preheat circuit and ceramic component to 150°C
  • ever contact the ceramic surface with the iron tip
  • 30 watt iron output (max)
  • 280°C tip temperature (max)
  • 3.0 mm tip diameter (max)
  • Limit soldering time to 5 sec.
Figure 4: Wave Solder Profile for MLCCs
Figure 4: Wave Solder Profile for MLCCs
SMT Soldering Temperatures

Solders typically utilized in SMT have melting points between 179°C and 188°C. Activation of rosin fluxes occurs at about 200°C. Based on these facts a minimum peak reflow temperature of 205°C to 210°C should be established. A maximum peak reflow temperature of 225°C should be adequate in most circumstances. Many reflow process profiles have peaks ranging from 240°C to 260°C and while ceramic capacitors and inductors can withstand soldering temperatures in this range for short durations they should be minimized or avoided whenever possible. Use of PCB mounted multiple thermocouple M.O.L.E. profiling is advised for accurate characterization of circuit heat absorption and maximum temperature conditions.

Figure 5: Solder Reflow Profile for LASERtrims
Figure 5: Solder Reflow Profile for LASERtrims®
Reflow Solder

The general term “reflow” refers to several methods used in heating the circuit so that solder paste reflows, or “wetting” of the ceramic capacitor and PCB contacts occurs. These methods include infrared, convection and radiant heating. The size of the solder fillet may be controlled by varying the amount of solder paste that is screened onto the circuit. Recommended temperature limits and times for solder reflow are shown in Figure 1 and 2 for Ceramic Capacitors and inductors and for LASERtrim® in Figure 5.

Vapor Phase

A typical vapor phase soldering process consists of several temperature zones created by saturated vapor from a boiling liquid. As the circuit passes through the zone the vapor condenses on the solder paste, pad, and termination resulting in heat transfer and reflow of the solder paste. Vapor phase reflow produces consistent circuit heating with reflow occurring at a relatively lower temperature that is determined by the known boiling point of the liquid used, typically 215°C. Recommended temperature limits for vapor phase reflow are shown in Figure 3.

Figure 6 for LASERtrims
Figure 6
Solder Wave

Wave soldering is perhaps the most rigorous of surface mount soldering processes due to the steep rise in temperature seen by the circuit as it is immersed in the molten solder wave, typically at 240°C. Recommended temperature limits for wave soldering are shown in Fig. 4.

Cool Down Cycle

After the solder reflows properly the assembly should be allowed to cool gradually at room ambient conditions. Attempts to speed this cooling process or immediate exposure of the circuit to cold cleaning solutions may result in thermal shock cracking of the ceramic capacitor.

Solder Fillets

To avoid detrimental effects of thermal and mechanical stress it is essential that the solder fillet be limited to 2/3rds of the overall height of the MLC termination as illustrated in the figure below. The solder fillet can be controlled by solder paste deposition and pad design in reflow and vapor phase processes and by pad design and use of hot air knives in the wave process. As shown in Figure 6.

Tomb Stoning/Chip Movement

Tomb-stoning or draw bridging is illustrated in the figure below. Tomb-stoning or other undesirable chip movements may result if unequal surface tension forces exist as the molten solder wets the MLC terminations and mounting pads. This tendency can be minimized by insuring that all factors at both solder joints are equal, namely; pad size, solder mass, termination size, component position and heating. Tomb-stoning is easily avoided through proper design, material selection and proofing of the process. As shown in figure 7.

Figure 7 MLC Chip Movement
Figure 7
How to Order
Multi-layer High Q capacitor how to order part number